遅ればせながら,会員の皆様はよい新年のスタートを切られたことと思います。少々怪しい空気もすでにありますが,今年は昨年のような騒がしいことが立続けに起こらないよう願わずにはいられません。
さて,過去2回News
Letterは8月に出してきましたが,先日幹事の選挙がありましたので,速報を兼ねてNo.
3をお送りします。また,12月には第4回研究会でブルッセル自由大学のDr. R. Hauspieに講演をしていただきました。Dr.
Hauspieには日本人類学会の機関誌Anthroopological Science発刊の時からEditorial
Consultantになってもらっています。また,来日決定と時期をほぼ同じくしてAnnals of Human
Biologyの3人のEditorsのうちの一人となりました。12月の研究会は国際的に非常に評価の高い氏とface to
faceになれるよい機会でしたが,本分科会会員の参加は10名と非常に少なく残念でした。成長研究会の最後の会は佐竹隆氏のご紹介でテキサス大学のMalina教授を,95年の12月には大塚柳太郎氏のご紹介でケンブリッジ大学のDr.
Uliaszekをお迎えし,外国の研究者と親しく接するのもこれで3回となりました。豊かな資料と実績があるにも拘わらず,島国で閉塞状態にあった日本の人類学のAuxologyにも少しずつ風穴が開いてきたように思います。今後も会員はじめ関係分野の方々のご協力をいただいて,このような会を持ちたいと思いますので,人物交流の様々な情報をお寄せ下さい。さらにこの3月にはシンポジウムを予定していますので大勢の方の参加を期待しています。(芦澤)
1996年1月24日に幹事選挙の開票を行い,以下の5名が新幹事(1995−96年および1996−97年)に決定しました:(五十音順)芦澤玖美,大槻文夫,河辺俊雄,佐竹隆,濱田穣。
来る3月9日(予定)に新旧幹事会を開惟します。
選挙管理委員
大槻文夫
高石昌弘
Dr. R. Hauspieの講演会が1995年12月2日(土)15時から東京大学学士会館分館で開催された。
Individual and average growth: methodological aspects
Dr. Roland HAUSPIE
Frije Universiteit Brussel
Laboratorium
Anthropogenetica
The growth curve shows various features which can be recognised in each
individual but which may considerably vary in timing intensity from the basic
pattern of the curve of a single child one and individual to another. The basic
pattern of the human growth curve has basicaliy three phases: (1) a period of
rapid, but nevertheless decelerating, growth during the first 2 years after
birth, often denoted as "early childhood period", (2) a period of more or less
constant (or slightly decelerating) growth from about 2 years of age till the
onset of adolescence, often denoted as "childhood period", and (3) an adolescent
growth spurt. The shape and characteristics of a growth curve can only be
studied on the basis of purely longitudinal data, i.e. serial measurements of
body size taken at time intervals of the same children. While human growth seems
to be a fairly continuous process, we can only, at the best of our abilities,
mrasure the phenomenon at discrete time intervals. The data then serve to
estimate the suposed smooth growth proess. It is at this level that mathematical
modelling is of great use. The main goals of fitting mathematical models to
growth data are:
(1) to summarise the often vast amount of longitudinally
collected growth data into small number of constants, the function parameters,
(2) to produce a smooth continuous monotonously increasing growth curve
based on the the observed measures of growth,
(3) to derive biological
parametea characterising the shape of growth curve, such as age, size and
velocity at take-off and at peak velocity of adolescent growth spurt,
(4) to
generate the typical average growth curve in the sample which does not suffer
from smoothing effects such as i cross-sectionally obtained mean growth curves,
(5) to compare shapes of growth curves between individuals and between
groups of individuals or to relate particular features of the growth curve to
genetic and/or environmental factors.
Several models have been proposed to
describe the entire postnatal growth period or to describe parts of the growth
(childhood or adolescence). Most curve useful mathematical growth models are
non-linear functions. Their characteristics, potential use, and drawbacks are
briefly presented and discussed.
Average growth is derived from
cross-sectional, mixed-longitudinal or longitudinal growth data. Estimating
centile lines is a major technique in describing population growth. Various
techniques can be used to estimate centile lines. Among others, the use of
Pan-Healy's technique to estimate centile lines will be discussed and
illustrated with some examples. Other approaches, based on non-linear
regression, polynomial fits and cubic splines, will be illustrated on the basis
of centile lines estimated for the growth and growth velocity of patients with
Turner syndrome.
オーガナイザー 加藤則子(国立公衆衛生院母子保健学部)
シンポジウム終了後,懇親会を予定しています。お誘い合わせの上ご参加下さい。